Assignment 10

1. Use the finite-difference method with $h=0.2$ to approximate a solution to the boundary value problem

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u(0) & =2 \\
u(1) & =3
\end{aligned}
$$

2. Use the finite-difference method with $h=0.2$ to approximate a solution to the boundary value problem

$$
\begin{aligned}
u^{(2)}(x) & =0.3 u^{(1)}(x)+0.1 u(x)-x-0.2 \\
u^{(1)}(0) & =0 \\
u(1) & =3
\end{aligned}
$$

3. Given the function $u(\mathbf{x}, t)=t x_{1} x_{2}-x_{1}+2 x_{2}$, approximate the partial derivative with respect to time and the gradient at the point $t=0.2$ and $\mathbf{x}=\binom{0.3}{-0.5}$ using a value of $\Delta t=h=0.1$.
4. Given the function in Question 3, approximate all three second partials: with respect to t, x_{1}, and x_{2}.
5. In class, we did not discuss an explicit formula for $\frac{\partial^{2}}{\partial x \partial y} u(x, y)$. Come up with such a formula. Show that your formula works by calculating this second partial explicitly using the process shown in your calculus course for the function in $x e^{x} \sin (y)$ at $x=1$ and $y=2$, and then calculating your approximation using $h=0.01$.
6. Demonstrate that the formula for $\frac{\partial^{2}}{\partial x \partial y} u(x, y)$ that you found in Question 5 is the same formula you would find if you were to approximate $\frac{\partial^{2}}{\partial y \partial x} u(x, y)$.
7. Approximate a solution to the heat equation with four steps in time if the boundary conditions are $u_{a}(t)=0$ and $u_{b}(t)=2$ and the initial state is $u_{0}(x)=1-x$ if the interval in space is $[0,1]$ and $h=0.2$. The coefficient $\alpha=4$. You should use a Δt, as described in the course notes, to ensure convergence.
